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ABSTRACT: In materials engineering, it is often essential to know what are the best solvents to process any polymer, and employing

methods based on Hansen solubility parameters are an effective way to find them. In this work the Hansen solubility parameters of pol-

yether sulfone, lignin, and bitumen have been calculated by an alternative optimization procedure. It has been shown that, by applying

an evolutionary strategy to Hansen’s correlation method, it is possible to improve the fitting of solubility spheres. Compared with previ-

ous calculations, most quality-of-fit parameters are optimized. As a result, the sphere radii are reduced and, except for lignin, at least

one of the solubility parameters is considerably changed (by 0.9–1.5 MPa1/2). Shortcomings of the correlation method are also pointed

out, such as lack of data quality evaluation on set of solvents and uncertain character for partially solving solvents. At least the former

could be handled by a proposed parameter called fill factor. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2013
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INTRODUCTION

In polymer science and engineering, preparing stable solutions

is a fundamental step to succeed in the processing of advanced

materials. Besides various physical and chemical properties

involved (viscosity, surface tension, density, etc.), the fine selec-

tion of a set of solvents that are able to solubilize the solute of

interest, represents a huge step towards the achievement of a

thermodynamically stable solution. In this context, a computa-

tional tool for helping in this selection has been developed by

calculating the Hansen solubility parameters of any kind of sol-

ute based on an empirical solubility map.

Hansen solubility parameters (HSPs) are numerical values asso-

ciated with energies or intermolecular cohesive forces binding

molecules in a substance. They have direct applications in sev-

eral scientific disciplines, such as surface science, where they

have been used to characterize the wettability of various surfaces

and the adsorption properties of pigment surfaces.

In this work, genetic algorithms were applied to calculate HSPs

of polymers and compare results with that of the literature. As

no well-established standard, besides Hansen’s is available to

qualify results obtained by different methods and different

researchers, a discussion is made about which criteria are good

enough to guarantee reliable data.

Hansen Solubility Parameters

Before introducing concepts and the theory developed by

Charles Hansen, it is beneficial to give a short physical argu-

ment about the solvation process.1 For any solution to occur

spontaneously, thermodynamics requires that the Gibbs free

energy change in the mixing process be zero or negative. In a

simplified description, the Gibbs free energy DGM can be

divided in two parts:

DGM 5DGM
comb 1DGM

noncomb (1)

where the combinatorial part DGM
comb is related to the combi-

natorial entropy change DSM
comb (that results by simply mixing

components) by:

DGM
comb 52TDSM

comb (2)

and the noncombinatorial part DGM
noncomb refers to all other

free energy effects, including the heat of mixing, and can be cal-

culated by:
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DGM
noncomb 5u1u2VM d12d2ð Þ2 (3)

In the above equations, T is the absolute temperature, /1 and

/2 are volume fractions of solvent and polymer, VM is the vol-

ume of the mixture and d1 and d2 are called solubility parame-

ters of solvent and polymer.

By analysing eqs. (1–3), one can see that the difference in solubil-

ity parameters for the solvent-solute pair is important in deter-

mining the system energy equilibrium. It is clear that a match in

solubility parameters leads to a zero change in noncombinatorial

free energy and the positive entropy change (the combinatorial

entropy change), found in simple mixing to result in a disordered

mixture compared to the pure components, will ensure that a

solution is possible from a thermodynamic point of view. The

maximum difference in solubility parameters that can be toler-

ated for a solution that still occurs corresponds to the case

DGM 5 0. From eqs. (1–3), this condition can be expressed as:

d12d2ð Þ2 5 TDSM
comb

� �
= u1u2VMð Þ (4)

Equation (4) clearly shows that an alternate view of the solubil-

ity situation at its limit is that it is the entropy change that dic-

tates how closely the solubility parameters must match each

other for the mixture to stabilize.

Solubility parameters are sometimes called cohesion energy

parameters as they derive from the energy required to convert a

liquid to a gas state. All types of bonds holding molecules

together are broken in the vaporization process. Thus the

energy of vaporization is a direct measure of the total cohesive

energy holding the liquid molecules together and both can be

considered as being identical to each other.

The term solubility parameter was first used by Hildebrand in

1949.2 The Hildebrand solubility parameter is defined as the

square root of the total cohesive energy density:

d5 E=Vð Þ1=2
(5)

where V is the molar volume of the pure solvent and E is its

(measurable) energy of vaporization.

The Hildebrand solubility parameters are applicable to the regu-

lar solutions, which implies strictly nonpolar systems. As this is

not the case for most real systems, other researchers have tried

to extend Hildebrand’s original idea, splitting the Hildebrand

solubility parameter into two or more components. The

approach proposed by Charles Hansen in 1967 is one of the

most proeminent in this regard.3

The basis of Hansen solubility parameters (HSPs) is that the

total cohesive energy (E) of a liquid consists of three major

intermolecular interactions: (nonpolar) dispersion forces,

(polar) permanent dipole–permanent dipole forces, and (polar)

hydrogen bonding. The most general is the nonpolar cohesive

energy (ED), derived from induced dipole forces and also called

atomic or dispersion interactions in scientific literature. All

molecules contain these types of attractive forces. The second

type is the polar cohesion energy (EP), which results from

inherently molecular interactions and is essentialy found in

polar (noncentrosymmetric) molecules. The molecular dipole

moment is the primary parameter used to calculate it. The third

major cohesive energy source (EH) comes from hydrogen bonds

which, according to a modern definition,4 are “attractive inter-

actions between a hydrogen atom from a molecule or a molecu-

lar fragment X–H in which X is more electronegative than H

and an atom or a group of atoms in the same or a different

molecule in which there is evidence of bond formation”.

Therefore, the basic equation governing the assignment of Han-

sen parameters is that E must be the sum of the individual

energies that make it up:

E5ED1EP1EH (6)

Dividing this by the molar volume gives the square of the total

(or Hildebrand) solubility parameter as the sum of the squares

of Hansen components:

E=V5 ED=Vð Þ1 EP=Vð Þ1 EH=Vð Þ (7)

d25d2
D1d2

P1d2
H (8)

As shown by Figure 1, any molecular substance can be repre-

sented by a point in a tridimensional space, called Hansen

space, whose orthogonal axes are HSPs (x 5 dd, y 5 dp, z 5 dh).1

Within Hansen space, a solute is represented not only by their

HSPs, as with solvents, but also by an interaction radius (R0),

thus defining a solubility sphere whose centre coordinates are

the HSPs (dd, dp, dh). All substances qualified as good solvents

for the solute should stay within this sphere and all considered

bad (nonsolvents) should lie outside. A useful parameter for

comparing two substances is the solubility parameter distance

(Ra), based on their respective HSP components:

Ra5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 dD22dD1ð Þ21 dP22dP1ð Þ21 dH22dH1ð Þ2

q
(9)

The constant “4” is justified in theory as a convenient factor for

visualizing spherical, rather than ellipsoidal regions of solubility.

Figure 1. Representation of solvents (points) and a polymer (solubility

sphere) in Hansen space. Delta-D, Delta-P, and Delta-H are, respectively,

the dispersion (nonpolar), permanent-dipole, and hydrogen bonding solu-

bility parameters. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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It is obvious that solubility, or high affinity, requires Ra<R0, so

a RED (Relative Energy Difference) number is often used to

quantify distances Ra relative to the interaction radius R0:

RED 5
Ra

Rb

(10)

By this definition, RED 5 0 is equivalent to no energy differ-

ence, RED< 1 indicates high solute-solvent affinity, RED> 1

indicates low affinity and RED 5 1 (or around 1) reflects a

boundary condition.

The reliability of the spherical characterization and the need

to divide the total cohesion energy into at least three parts

has been confirmed systematically by locating nondissolving

solvents that are able to dissolve a given polymer when

mixed. They only need to be located on opposite sides of the

polymer sphere of solubility. This result also demonstrates

that the mixing of the solvents follows a geometric mean

rule.

The Correlation Method

An advanced method to compute HSPs and the interaction

radius of solutes is based on solubility/swelling tests with

many solvents. There are similar simpler methods which rely

on pure statistical analysis5 or correlation with intrinsic viscos-

ities6 but the computational ones can be much more effective.

The HSPs of most substances are determined by experimental

procedures combined with theoretical models, or simply group

contribution techniques, which have been optimized by fitting

and regression methods as the amount of collected data

increases. The HSPs of solutes, on the other hand, are usually

calculated by testing the degree of interaction with a large

variety of solvents (qualitatively evaluated by means of

Figure 2. Basic flowchart for the implemented algorithm (adapted from reference [7]). [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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solubility, swelling or some other physical change) and apply-

ing computer algorithms to correlate empirical tests with sol-

vent HSPs.

In this work a general algorithm is applied, similar to the one

proposed by Hansen1 and used by other groups7,8 for calculat-

ing HSPs of polymers. Figure 2 illustrates a flowchart of this

algorithm. The input data to the computer program is a list of

n solvents for which there is experimental data in the correla-

tion (i 5 1, 2, ..., n), their known HSPs (ddi, dpi, dhi) and solu-

bility factors (Si 5 0, 1). The solubility factor indicates the

degree of interaction between polymer and solvents. Zero stands

for insoluble or no swelling, and 1 for soluble.

The program starts with a set of random trials for the polymer

HSPs and interaction radius (dd, dp, dh, and R0), all limited to a

suitable range. For each set of HSPs and radius, the program

evaluates the input data using a quality-of-fit function (origi-

nally callled Desirability Function) named as the DATAFIT func-

tion by Hansen, which has the form:

DATAFIT 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A13A23 � � �3Anð Þn

p
(11)

where n is the number of solvents and the Ai quotients are

given by:

Ai5e2 ERROR DISTANCE ið Þ½ � (12)

where ERROR DISTANCE(i) is the error distance of the solvent

to the sphere boundary, so it depends on R0, Rai, and Si. The

distance Rai is the already introduced solubility parameter dis-

tance, calculated by eq. (9), which in this case measures the dis-

tance from a given solvent point to the sphere center.

The Ai quotient for any good solvent (Si 5 1) inside the sphere

(Rai<R0) or any bad solvent (Si 5 0) outside the sphere (Rai>R0)

equals 1, since the error distance is 0. For a good solvent (Si 5 1)

outside the sphere (Rai>R0), the Ai quotient is given by:

Ai5e2 Rai2R0ð Þ (13)

Similarly, a bad solvent (Si 5 0) inside the sphere (Rai<R0)

gives the following contribution to DATAFIT:

Ai5e2 R02Raið Þ (14)

Thus all Ai quotients are within the range (0–1), limiting the

DATAFIT function to the same range, according to eq. (11).

DATAFIT approaches 1 as the fitting improves during optimiza-

tion, reaching this end value just when all the good solvents are

inside and all the bad ones are outside the sphere. It is common

that the DATAFIT doesn’t reach 1, so it is considered a toler-

ance for the maximum difference to 1 (or minimum DATAFIT)

below which optimization stops.

Improving Optimization with Genetic Algorithms

The main difference between the approach followed here and

the others is related to the optimization process. Hansen’s deter-

ministic approach starts at a definite point and evolutes by aver-

aging points at the corners of cubes (of varying sizes) and

choosing the best corners as new centers.1 Gharagheize7 and

Redelius8 apply different deterministic numerical methods in

MATLAB environment, the Nelder-Mead (Downhill Simplex)

algorithm9 and the Sequential Quadratic Programming.10 On the

other hand, in this work a stochastic evolutionary strategy is

used, which spans the subspace of interest in Hansen space and

is considered more effective, since it is less susceptible to con-

verge to local optima.11

Figure 3. Solubility spheres for polyether sulfone calculated with downhill-

simplex, Hansen, and genetic optimization algorithms (bigger to smaller,

respectively). Blue sphere points indicate good solvents and red diamond

points bad solvents. Data values from Table I. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Solubility spheres for bitumen 2 calculated with Hansen and

genetic optimization algorithms (bigger to smaller, respectively). Points:

blue spheres locate good solvents, red diamonds bad solvents, green aster-

isks and violet X outliers. Data values from Table I. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Genetic algorithms are heuristic stochastic global optimization

methods successfully applied in diverse fields, like aerodynamic

design problems,12 data mining,13 vehicle routing,14 climate

control,15 and quantum control of atomic/molecular dynam-

ics.16 In analogy to evolution in nature, they mimic natural

processes of biological evolution, such as selection of individu-

als, mutation and recombination of genes.17 In the struggle for

life, the genetic merit of individuals of a species influence their

chance of survival. After successive generations, each species

evolves following a natural selection (the selection of the fittest),

in which genetic variants more adapted to environmental condi-

tions reproduce preferentially in following generations.

Any genetic algorithm can promote competition between, say,

different sets of polymer HSPs and interaction radius (the species

individuals). Selection of the best individual after several algo-

rithm iteration cycles (the evolution), is guided according to the

purpose for which it is applied; in the case in hand, DATAFIT

maximization. Therefore, DATAFIT value is the chosen individual

fitness parameter, a comparative quality factor between different

HSPs and radius sets (like strength, beauty, intelligence and

immunity, among others, which are fitness factors for animal

species). Product of interaction between genetic qualities and the

environment, the fitness factor is what determines whether the

individual is good enough to reproduce.

EXPERIMENTAL

In the present work, the implemented genetic algorithm starts

with a large initial population (usually 10,000), from which the

best (1,024) are selected to be the first parent set. A percentage

(95%) of parents has a percentage (100%) of the 4 genes (3

HSPs and 1 R0) mutated by a random top-limited (1) amount

before they recombine genes (2 crossover points ramdomly cho-

sen) and generate the next population (8,192). From this gener-

ation, again the best are selected, having their genes mutated

and recombined to produce the following generation. This

evolutionary process repeats cyclically until DATAFIT is higher

than a tolerance factor (based on previous tests). At the end,

the best individual gives ideal HSPs and radius for the polymer.

In order to keep the sphere radius as small as possible, it is

multiplied to DATAFIT a size factor function, which acts to

decrease the DATAFIT value for larger radii R0. So the real

DATAFIT used for optimization is slightly different from the

one presented above. The higher the R0, the lower the DATA-

FIT. In this way, as in Hansen’s program, the output is for the

least radius allowing the maximum DATAFIT. Although this fea-

ture affects results decisively, the way it is implemented is not

discussed by Hansen and not even mentioned by other authors.

In the actual implementation, DATAFIT is multiplied by the

function:

Size Factor 5 R0ð Þ21=m
(15)

where m is an empirical degree of the mth root, which in most

calculations performed, has been set to around 20.

Applying this optimization approach to the correlation method,

the solubility spheres of polyether sulfone, lignin, and bitumen

were calculated and compared with results from the literature.

As there are not many tested polymers, the chosen ones were

selected by considering the completeness of published data.

RESULTS AND DISCUSSION

The main results with calculated and compared HSPs for the

selected polymers are shown in Table I. DATAFIT is the original

function, given by eq. (11). Unlike comparative works, two

extra criteria of quality are exhibited: sensibility and specificity.

The former evaluates the ratio of good solvents in the expected

region (inside the solubility sphere) to the total good solvents;

likewise, the latter represents the ratio of bad solvents outside

the sphere to the total bad solvents. The parameter outliers cor-

responds to the ratio of solvents out of the expected region

(i.e., good solvents outside the sphere and bad solvents inside

it) to the total solvents, and is complementary for both good

and bad solvents.

For each polymer presented in Table I, deviations between com-

parative results are analyzed by generating another table with all

tested solvents, their HSPs and solubility factors and comparing

Table I. Comparative Results Between Different Calculation Methods for the Selected Polymers

Polymer Algorithm
dD

(MPa
1/2)

dP

(MPa
1/2)

dH

(MPa
1/2)

R0

(MPa
1/2) DATAFIT Nr.

Sensibility
(%)

Specificity
(%)

Outliers
(%)

Polyether
sulfone

Hansen18 19.6 10.8 9.2 6.2 0.999 41 100.0 97.2 2.4

Downhill-Simplex7 20.09 10.63 9.57 6.72 1.000 41 100.0 100.0 0.0

Genetic 18.84 11.22 7.95 5.42 1.000 41 100.0 100.0 0.0

Bitumen 1
Sequential
Quadratic
Programming8

18.40 3.90 3.60 5.76 0.980 48 94.7 93.1 6.2

Genetic 18.66 4.79 3.45 5.94 0.989 48 94.7 96.6 4.2

Bitumen 2 Hansen19 18.6 3.0 3.4 6.3 0.977 48 85.0 85.7 14.6

Genetic 18.33 3.99 3.49 5.71 0.980 48 90.0 92.9 8.3

Lignin Hansen20 21.9 14.1 16.9 13.7 0.990 82 87.5 98.5 3.7

Genetic 21.71 14.18 16.93 13.45 0.990 82 93.8 98.5 2.4
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REDs for each solvent. This is shown for polyether sulfone,

bitumen 1, bitumen 2, and lignin in Tables (II–V), respectively.

When calculated solubility spheres have a reasonable variation

in size or center position, it is helpful to reproduce them as 2D

or 3D plots in Hansen space. From the resultant spheres com-

pared in Table I, the most prominent changes are seen for poly-

ether sulfone and bitumen 2, which are shown in Figures 3 and

4, respectively.

Table II. List of Solvents in the Correlation for HSP Calculation of Polyether Sulfone

Solvent dD dP dH Solubility RED1 RED2 7 RED3 18

Methyl-2-pyrrolidone 18.0 12.3 7.2 1 0.393 0.758 0.655

Dimethyl_formamide 17.4 13.7 11.3 1 0.934 0.958 0.915

Acetophenone 19.6 8.6 3.7 1 0.962 0.936 0.955

Methylene_dichloride 18.2 6.3 6.1 1 0.997 1.000 0.990

Dimethyl_sulfoxide 18.4 16.4 10.2 0a 1.054 1.000 0.996

g-Butyrolactone 19.0 16.6 7.4 1 0.999 1.000 0.998

Ethylene_dichloride 19.0 7.4 4.1 0 1.002 1.000 1.007

Isophorone 16.6 8.2 7.4 0 1.001 1.147 1.094

o-Dichlorobenzene 19.2 6.3 3.3 0 1.255 1.165 1.204

Tetrahydrofuran 16.8 5.7 8.0 0 1.265 1.246 1.237

Diacetone_alcohol 15.8 8.2 10.8 0 1.357 1.340 1.321

Methyl_ethyl_ketone 16.0 9.0 5.1 0 1.240 1.409 1.368

Acetone 15.5 10.4 7.0 0 1.252 1.420 1.371

2-Nitropropane 16.2 12.1 4.1 0 1.215 1.433 1.387

Ethylene_glycol_monoethyl_ether 16.2 9.2 14.3 0 1.567 1.372 1.395

Propylene_carbonate 20.0 18.0 4.1 0 1.500 1.367 1.429

Cyclohexanol 17.4 4.1 13.5 0 1.747 1.389 1.467

Chloroform 17.8 3.1 5.7 0 1.600 1.433 1.483

Trichloroethylene 18.0 3.1 5.3 0 1.605 1.431 1.485

1,4-Dioxane 19.0 1.8 7.4 0 1.741 1.392 1.493

Ethyl_acetate 15.8 5.3 7.2 0 1.570 1.545 1.547

Ethylene_glycol_monobutyl_ether 16.0 5.1 12.3 0 1.736 1.525 1.563

Chlorobenzene 19.0 4.3 2.0 0 1.684 1.505 1.576

Nitroethane 16.0 15.5 4.5 0 1.457 1.606 1.580

Ethylene_glycol_monomethyl_ether 16.2 9.2 16.4 0 1.874 1.556 1.618

Butyl_acetate 15.8 3.7 6.3 0 1.808 1.713 1.741

1-Butanol 16.0 5.7 15.8 0 2.056 1.698 1.777

Methyl_isobutyl_ketone 15.3 6.1 4.1 0 1.760 1.776 1.782

Nitromethane 15.8 18.8 5.1 0 1.866 1.886 1.899

Toluene 18.0 1.4 2.0 0 2.139 1.883 1.978

Ethanol 15.8 8.8 19.4 0 2.431 1.962 2.077

Diethylene_glycol 16.6 12.0 20.7 0 2.496 1.967 2.101

Benzene 18.4 0.0 2.0 0 2.347 2.007 2.129

Diethyl_ether 14.5 2.9 5.1 0 2.278 2.131 2.183

Ethanol_amine 17.0 15.5 21.2 0 2.655 2.091 2.241

Carbon_tetrachloride 17.8 0.0 0.6 0 2.502 2.181 2.301

Propylene_glycol 16.8 9.4 23.3 0 2.947 2.274 2.457

Methanol 15.1 12.3 22.3 0 2.990 2.421 2.575

Hexane 14.9 0.0 0.0 0 2.922 2.632 2.745

Ethylene_glycol 17.0 11.0 26.0 0 3.397 2.614 2.837

Formamide 17.2 26.2 19.0 0 3.485 2.844 3.044

In the solubility column a denotes an outlier for one of the comparative results. RED1 exhibits results from this work, while RED2 and RED3 those
found in the literature.7,18 (HSP and solubility factors of solvents were extracted from the same reference.)
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Table III. List of Solvents in the Correlation for HSP Calculation of Bitumen 1

Solvent dD dP dH Solubility RED1 RED2 8

2-Butanol 15.8 5.7 14.5 0 2.101 2.128

2-Butyl octanol 16.1 3.6 9.3 0 1.327 1.276

Butyraldehyde 15.6 10.1 6.2 0 1.442 1.522

Caprolactone (epsilon) 19.7 15.0 7.4 0 1.870 2.096

1-Chloropentane 16.0 6.9 1.9 1a 1.000 1.022

Chloroform 17.8 3.1 5.7 1 0.560 0.445

Cyclohexanol 17.4 4.1 13.5 0 1.749 1.762

Cyclohexanone 17.8 6.3 5.1 1 0.479 0.540

Cyclohexylamine 17.2 3.1 6.5 1 0.770 0.670

Cyclopentanone 17.9 11.9 5.2 0 1.257 1.434

cis-Decahydronaphthalene 18.8 0.0 0.0 1 0.990 0.925

1,4-Dichlorobutane 18.3 7.7 2.8 1 0.515 0.678

Dichloromethyl methyl ether 17.1 12.9 6.5 0 1.549 2.080

1,1-Diethoxy ethanol (acetal) 15.2 5.4 5.3 0 1.214 1.177

Diethylene glycol monoethyl ether acetate 16.2 5.1 9.2 0 1.278 1.258

Diisopropylamine 14.8 1.7 3.5 0 1.402 1.301

1,2-Dimethoxybenzene 19.2 4.4 9.4 0 1.020 1.059

Ethyl acetate 15.8 5.3 7.2 0 1.159 1.126

Ethyl benzene 17.8 0.6 1.4 1 0.836 0.710

Ethyl lactate 16.0 7.6 12.5 0 1.831 1.877

2-Ethyl-hexanol 15.9 3.3 11.8 0 1.706 1.676

Ethylene glycol dibutyl ether 15.7 4.5 4.2 0a 1.009 0.945

Hexadecane 16.3 0.0 0.0 0 1.271 1.165

Hexyl acetate 15.8 2.9 5.9 0 1.099 1.000

Isopropyl acetate 14.9 4.5 8.2 0 1.501 1.459

Lauryl alcohol 17.2 3.8 9.3 0 1.116 1.080

Mesityl oxide 16.4 6.1 6.1 0b 0.914 0.906

Methyl acetate 15.5 7.2 7.6 0 1.339 1.353

Methyl benzoate 17.0 8.2 4.7 1 0.831 0.914

Methyl ethyl ketone 16.0 9.0 5.1 0 1.177 1.245

1-Methyl naphthalene 20.6 0.8 4.7 1 0.955 0.959

Methyl oleate 14.5 3.9 3.7 0 1.412 1.349

3-Methyl-2-butanol 15.6 5.2 13.4 0 1.969 1.979

Methylene dichloride 18.2 6.3 6.1 1 0.540 0.615

Nitrobenzene 20.0 8.6 4.1 1 0.786 1.000

Oleyl alcohol 14.3 2.6 8.0 0 1.699 1.630

Pyrrolidine 17.9 6.5 7.4 1 0.772 0.827

Salicylaldehyde 19.4 10.7 14.7 0 2.150 2.299

Tetrahydrofuran 16.8 5.7 8.0 1a 1.005 1.000

Tetrahydronaphthalene 19.6 2.0 2.9 1 0.569 0.546

1,2,3,5-Tetramethylbenzene 18.6 0.5 0.5 1 0.873 0.794

Toluene 18.0 1.4 2.0 1 0.659 0.524

2-Toluidine 19.4 5.8 9.4 0 1.046 1.127

1,1,2-Trichloroethane 18.2 5.3 6.8 1 0.595 0.620

Tricresyl phosphate 19.0 12.3 4.5 0 1.278 1.489

1,2,4-Trimethylbenzene 18.0 1.0 1.0 1 0.790 0.681

2,2,4-Trimethylpentane 14.1 0.0 0.0 0 1.828 1.746

o-Xylene 17.8 1.0 3.1 1 0.704 0.544

In the solubility column a denotes an outlier for one of the comparative results and b for both. RED1 exhibits results from this work and RED2 those
found in the literature.8 (HSP and solubility factors of solvents were extracted from the same reference.)
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Table IV. List of Solvents in the Correlation for HSP Calculation of Bitumen 2

Solvent dD dP dH Solubility RED1 RED2 19

Benzophenone 19.6 8.6 5.7 1a 1.000 1.012

2-Butanol 15.8 5.7 14.5 0 2.143 2.019

2-Butyl octanol 16.1 3.6 9.3 0 1.285 1.231

Butyraldehyde 15.6 10.1 6.2 0 1.511 1.541

Caprolactone (epsilon) 19.7 15.0 7.4 0 2.102 2.038

1-Chloro pentane 16.0 6.9 1.9 1b 1.002 1.059

Chloroform 17.8 3.1 5.7 1 0.457 0.445

Cyclohexanol 17.4 4.1 13.5 0 1.783 1.657

Cyclohexanone 17.8 6.3 5.1 1 0.527 0.642

Cyclohexylamine 17.2 3.1 6.5 1 0.677 0.663

Cyclopentanone 17.9 11.9 5.2 0 1.425 1.458

cis-Decahydronaphthalene 18.8 0.0 0.0 1 0.943 0.723

1,4-Dichlorobutane 18.3 7.7 2.8 1 0.661 0.758

1,1-Diethoxy ethanol (acetal) 15.2 5.4 5.3 0 1.168 1.184

Ethylene glycol monoethyl ether acetate 16.2 5.1 9.2 0 1.263 1.241

Diisopropylamine 14.8 1.7 3.5 0 1.300 1.224

1,2-Dimethoxybenzene 19.2 4.4 9.4 0 1.081 0.996

Ethyl acetate 15.8 5.3 7.2 0 1.123 1.135

Ethyl benzene 17.8 0.6 1.4 1 0.722 0.557

Ethyl lactate 16.0 7.6 12.5 0 1.886 1.817

2-Ethyl-hexanol 15.9 3.3 11.8 0 1.690 1.586

Ethylene glycol dibutyl ether 15.7 4.5 4.2 0b 0.934 0.959

Hexadecane 16.3 0.0 0.0 0 1.169 1.025

Hexyl acetate 15.8 2.9 5.9 1 1.000 0.974

Isopropyl acetate 14.9 4.5 8.2 0 1.460 1.420

Laurylalcohol 17.2 3.8 9.3 0 1.092 1.044

Mesityl oxide 16.4 6.1 6.1 0b 0.896 0.956

Methyl acetate 15.5 7.2 7.6 0 1.348 1.363

Methyl benzoate 17.0 8.2 4.7 1 0.898 0.991

Methyl ethyl ketone 16.0 9.0 5.1 0 1.231 1.289

1-Methyl naphthalene 20.6 0.8 4.7 1 0.995 0.753

Methyl oleate 14.5 3.9 3.7 0 1.342 1.310

3-Methyl-2-butanol 15.6 5.2 13.4 0 1.993 1.884

Methylene dichloride 18.2 6.3 6.1 1 0.612 0.689

Nitrobenzene 20.0 8.6 4.1 0 1.003 1.000

Oleyl alcohol 14.3 2.6 8.0 0 1.636 1.549

Pyrrolidine 17.9 6.5 7.4 1 0.828 0.872

Salicylaldehyde 19.4 10.7 14.7 0 2.319 2.185

Tetrahydrofuran 16.8 5.7 8.0 1a 1.000 1.021

Tetrahydronaphthalene 19.6 2.0 2.9 1 0.574 0.364

1,2,3,5-Tetramethylbenzene 18.6 0.5 0.5 1 0.810 0.608

Toluene 18.0 1.4 2.0 1 0.536 0.388

2-Toluidine 19.4 5.8 9.4 0 1.146 1.081

1,1,2-Trichloroethane 18.2 5.3 6.8 1 0.625 0.664

Tricresyl phosphate 19.0 12.3 4.5 0 1.485 1.492

1,2,4-Trimethylbenzene 18.0 1.0 1.0 1 0.691 0.531

2,2,4-Trimethylpentane 14.1 0.0 0.0 0 1.748 1.600

o-Xylene 17.8 1.0 3.1 1 0.560 0.409

In the solubility column a denotes an outlier for one of the comparative results and b for both. RED1 exhibits results from this work and RED2 those
found in the literature.19 (HSP and solubility factors of solvents were extracted from the same reference.)
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Table V. List of Solvents in the Correlation for HSP Calculation of Lignin

Solvent dD dP dH Solubility RED1 RED2 19

Acetic acid 14.5 8.0 13.5 0 1.194 1.195

Acetic anhydride 16.0 11.7 10.2 0 1.003 1.006

Acetone 15.5 10.4 7.0 0 1.215 1.212

Acetonitrile 15.3 18.0 6.1 0 1.280 1.277

Acetophenone 19.6 8.6 3.7 0 1.113 1.096

Aniline 19.4 5.1 10.2 1 0.908 0.897

Benzaldehyde 19.4 7.4 5.3 0 1.058 1.044

Benzene 18.4 0.0 2.0 0 1.608 1.582

1-Bromonaphthalene 20.3 3.1 4.1 0 1.278 1.254

1,3-Butanediol 16.6 10.0 21.5 1 0.888 0.895

1-Butanol 16.0 5.7 15.8 0 1.061 1.060

Butyl acetate 15.8 3.7 6.3 0 1.416 1.403

Butyl lactate 15.8 6.5 10.2 0 1.161 1.158

Butyric acid 14.9 4.1 10.6 0 1.345 1.337

gamma-Butyrolactone 19.0 16.6 7.4 1 0.835 0.833

Butyronitrile 15.3 12.4 5.1 0 1.304 1.298

Carbon disulfide 20.5 0.0 0.6 0 1.618 1.586

Carbon tetrachloride 17.8 0.0 0.6 0 1.710 1.683

Chlorobenzene 19.0 4.3 2.0 0 1.391 1.369

1-Chlorobutane 16.2 5.5 2.0 0 1.523 1.506

Chloroform 17.8 3.1 5.7 0 1.309 1.293

m-Cresol 18.0 5.1 12.9 1 0.922 0.917

Cyclohexane 16.8 0.0 0.2 0 1.787 1.761

Cyclohexanol 17.4 4.1 13.5 0 1.019 1.013

Cyclohexanone 17.8 6.3 5.1 0 1.206 1.193

Cyclohexylchloride 17.3 5.5 2.0 0 1.442 1.424

Diacetone alcohol 15.8 8.2 10.8 0 1.085 1.085

o-Dichlorobenzene 19.2 6.3 3.3 0 1.229 1.210

2,2-Dichlorodiethyl ether 18.8 9.0 5.7 0 1.016 1.006

Diethylamine 14.9 2.3 6.1 0 1.567 1.552

Diethylene glycol 16.6 12.0 20.7 1 0.826 0.836

Diethylene glycol monobutyl ether 16.0 7.0 10.6 0 1.108 1.105

Diethylene glycol monomethyl ether 16.2 7.8 12.6 1a 1.000 1.001

Diethyl ether 14.5 2.9 5.1 0 1.621 1.605

Diethyl sulfide 16.8 3.1 2.0 0 1.563 1.543

Di(isobutyl) ketone 16.0 3.7 4.1 0 1.496 1.480

Dimethylformamide 17.4 13.7 11.3 1 0.766 0.774

Dimethyl sulfoxide 18.4 16.4 10.2 1 0.721 0.727

1,4-Dioxane 19.0 1.8 7.4 0 1.229 1.211

Dipropylamine 15.3 1.4 4.1 0 1.650 1.631

Dipropylene glycol 16.5 10.6 17.7 1 0.821 0.831

Ethanol 15.8 8.8 19.4 1 0.983 0.988

Ethanolamine 17.0 15.5 21.2 1 0.775 0.788

Ethyl acetate 15.8 5.3 7.2 0 1.316 1.306

Ethylbenzene 17.8 0.6 1.4 0 1.640 1.615

2-Ethyl-1-butanol 15.8 4.3 13.5 0 1.173 1.169

Ethylene glycol 17.0 11.0 26.0 1b 1.001 1.002
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The results obtained in this work clearly show that the proposed

optimization algorithm is not only valid to calculate polymer

solubility spheres, but is also able to refine HSP values calcu-

lated by other searching methods applied in the past. From

Table I it is observed that in all cases, at least one of the

quality-of-fit parameters is improved.

The best refinement is found for polyether sulfone, where a sub-

stantial change in HSPs is validated by the improvement of

most quality-of-fit parameters. Compared to the fitting achieved

by Hansen’s SPHERE program,18 DATAFIT and specificity (or

sensibility) are increased to the maximum (1 and 100%, respec-

tively), whereas outliers fraction is reduced to zero. If the sphere
size (R0) is considered as another quality-of-fit parameter, it is
possible to conclude that the fitting of the solubility sphere is
much better compared also to Gharagheize’s result in MATLAB
(Downhill-Simplex algorithm),7 reducing the sphere radius
from 6.72 to 5.42 MPa1/2. By fitting this improved sphere, con-
siderable differences are also found in HSP values (sphere cen-
ter), especially for the hydrogen component, which decreased
from 9.57 to 7.95 MPa1/2.

Regarding obtained results for the two bitumen correlations,

almost all quality-of-fit parameters are improved, especially

TABLE V. Continued

Solvent dD dP dH Solubility RED1 RED2 19

Ethylene glycol monobutyl ether 16.0 5.1 12.3 0 1.138 1.134

Ethylene glycol monoethyl ether 16.2 9.2 14.3 1 0.920 0.925

Ethylene glycol monoethyl ether acetate 15.9 4.7 10.6 0 1.210 1.204

Ethylene glycol monomethyl ether 16.2 9.2 16.4 1 0.900 0.906

Furan 17.8 1.8 5.3 0 1.390 1.372

Glycerol 17.4 12.1 29.3 0 1.132 1.128

Hexane 14.9 0.0 0.0 0 1.929 1.904

Isoamyl acetate 15.3 3.1 7.0 0 1.460 1.447

Isobutyl isobutyrate 15.1 2.9 5.9 0 1.530 1.516

Isooctyl alcohol 14.4 7.3 12.9 0 1.238 1.237

Isophorone 16.6 8.2 7.4 0 1.130 1.125

Mesityl oxide 16.4 6.1 6.1 0 1.278 1.268

Methanol 15.1 12.3 22.3 0 1.070 1.076

Methylal 15.0 1.8 8.6 0 1.492 1.479

Methyl ethyl ketone 16.0 9.0 5.1 0 1.282 1.274

Methyl isoamyl ketone 16.0 5.7 4.1 0 1.424 1.411

Methyl isobutyl carbinol 15.4 3.3 12.3 0 1.286 1.279

Methyl isobutyl ketone 15.3 6.1 4.1 0 1.476 1.464

Morpholine 18.8 4.9 9.2 1 0.997 0.986

Nitrobenzene 20.0 8.6 4.1 0 1.071 1.054

Nitroethane 16.0 15.5 4.5 0 1.259 1.254

Nitromethane 15.8 18.8 5.1 0 1.290 1.286

2-Nitropropane 16.2 12.1 4.1 0 1.267 1.260

1-Pentanol 15.9 4.5 13.9 0 1.147 1.143

1-Propanol 16.0 6.8 17.4 0 1.012 1.013

Propylene carbonate 20.0 18.0 4.1 0 1.027 1.015

Propylene glycol 16.8 9.4 23.3 0b 0.940 0.944

Pyridine 19.0 8.8 5.9 1 0.997 0.987

Styrene 18.6 1.0 4.1 0 1.444 1.421

Tetrahydrofuran 16.8 5.7 8.0 0 1.171 1.163

Tetrahydronaphthalene 19.6 2.0 2.9 0 1.417 1.392

Toluene 18.0 1.4 2.0 0 1.562 1.538

1,1,1-Trichloroethane 16.8 4.3 2.0 0 1.518 1.500

Trichloroethylene 18.0 3.1 5.3 0 1.316 1.298

Xylene 17.6 1.0 3.1 0 1.546 1.524

In the solubility column a denotes an outlier for one of the comparative results and b for both. RED1 exhibits results from this work and RED2 those
found in the literature.20 (HSP and solubility factors of solvents were extracted from the same reference.)
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bitumen 2, for which all are improved, including sphere size.

The most appreciable change in HSPs is found for polar

component, which increased from 3.90 (3.0) to 4.79 (3.99)

MPa1/2.

Comparative results for lignin, on the other hand, show mini-

mum improvement in quality-of-fit parameters, with almost no

change in HSPs. This is because the large number of solvents in

the correlation (82, compared with 41 and 48) fulfills Hansen

space and defines more precisally an optimum sphere. In other

words, there are more boundary solvents limiting possible

arrangements. In a numerical optimization perspective, it could

be said that there are less local optimum configurations close to

the global optimum.

Comparing this last result for lignin with the others, a short-

coming of this correlation method can be pointed out. As

already mentioned by Hansen,1 the approach of locating the

polymer HSP as the centre of a sphere has a problem in that it

is in reality, the poor solvents or nonsolvents located near the

boundary of the sphere that fix the boundary (and centre)

rather than the best solvents in the middle. This may present

problems for small sets of solvents, or even large sets when they

are badly distributed in Hansen’s space.

On the basis of these problems, partially solved by testing a

large set of solvents, a new parameter is proposed to vali-

date, or at least, estimate the data quality in these correla-

tions. This parameter, called “fill factor” (U), should be

able to determine if any data set is large and spread in

space enough to give a reliable solubility sphere. If we

divide the filling volume (a minimum volume in Hansen’s

space that emcompasses all solvents in the correlation) by

N equal volume units, U would give a measure of how

Hansen’s space is filled. It could simply have the following

function form:

U 5nf =N (16)

where nf is the number of volume units filled by any sol-

vent. If one calculates U for many good data sets, the aver-

age value should be a reliable estimate to validate any

data set.

It is worth mentioning another aspect related to the quality of

correlations and fittings. In this work two extra quality-of-fit

parameters, sensibility and specificity, are proposed in order to

measure the quality of fittings along with the two common

parameters, DATAFIT and outliers. These are justified first, by

noticing some cases in which DATAFIT and outliers alone

don’t characterize enough the features in the resulting sphere

fitting. Second, because there is no standard in the literature

to evaluate the quality of fittings, thus several published poly-

mer HSPs are poor when qualifying data sets and fittings and

cannot be safely used and referred to.6,21–23 Last but no less an

important fact is that some authors are not clear when consid-

ering boundary solvents (with partial solubility) in the correla-

tion.22,23 This is another shortcoming of the correlation

method, which must be dealt with by assigning to them one of

the two possible characters: good (1) or bad (0) solvents in

the algorithm.

CONCLUSIONS

By using an evolutionary strategy as an alternative optimization

procedure, it has been shown that it is possible to improve the

fitting of solubility spheres while applying Hansen’s correlation

method. In other words, it can better characterize materials,

thus providing refined knowledge for processing mixed com-

pounds and reducing costs and time in laboratory tests. This is

clearly seen for all selected samples. Compared with previous

results, most quality-of-fit parameters are optimized, including

two new suggested ones, sensibility and specificity, which are

shown to be more sensitive to any fitting improvement.

The genetic algorithm optimization approach, therefore, com-

bined to the correlation method, has proven to be an effective

way to find global solutions for HSPs of polymers and other

solutes. Although for convenience it has been performed in vis-

ual programming environment (LabVIEW platform), it is possi-

ble to be implemented with virtually any programming

language and in any environment. The only shortcoming is

that, due to its complexity, ready packages are usually no avail-

able to date.

It is expected that the addressed disadvantages of the correlation

method, as well as the suggested fill factor parameter, motivate

future researchers to increasingly develop improvements and

establish standards in this field.
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